EXHIBIT #8

SOIL SURVEY DATA

Conservation Service

9/29/2014 Page 1 of 3

×

ż

	Louisiana
	Parish,
201 201 200	 Natchitoches
20 XX E	Soil Map

Contract Contraction Contract Contraction Contract Contraction ● Story Spot Story Spot ● Wet Spot Family: Stoli Map may not be valid at this scale. ● Other Storation ● Storation Storation ● Storation Storation ● Interature Highways Storate of Map. That nat Resources Contracting scan cause in magnet do nat shore to contracting scan cause in magnet accuracy of scaling scan cause. ● Storate faunt Storate of Map. That nat Resources Conservation Service (Storate Tables) ● Interature Highways Storate of Map. That nat Resources Conservation Service (Storate Tables) ● Interature Highways Storate of Map. That nat Resources Conservation Service (Storate Tables) ● Interature Highways Storate of Map. That nat Resources Conservation Service (Storate Tables) ● Interature Highways Storate of Map. That nat Resources Conservation Service (Storate Tables) ● Interature Highways

9/29/2014 Page 2 of 3

USDA Natural Resources Conservation Service

Web Soil Survey National Cooperative Soil Survey

.

Map Unit Legend

	Natchitoches Parish, L	ouisiana (LA069)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Ga	Gallion silt loam, 0 to 1 percent slopes	27.2	57.6%
La	Latanier clay, 0 to 1 percent slopes, rarely flooded	20.0	42.4%
Totals for Area of Interest		47.2	100.0%

Engineering Properties

This table gives the engineering classifications and the range of engineering properties for the layers of each soil in the survey area.

Hydrologic soil group is a group of soils having similar runoff potential under similar storm and cover conditions. The criteria for determining Hydrologic soil group is found in the National Engineering Handbook, Chapter 7 issued May 2007(http:// directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17757.wba). Listing HSGs by soil map unit component and not by soil series is a new concept for the engineers. Past engineering references contained lists of HSGs by soil series. Soil series are continually being defined and redefined, and the list of soil series names changes so frequently as to make the task of maintaining a single national list virtually impossible. Therefore, the criteria is now used to calculate the HSG using the component soil properties and no such national series lists will be maintained. All such references are obsolete and their use should be discontinued. Soil properties that influence runoff potential are those that influence the minimum rate of infiltration for a bare soil after prolonged wetting and when not frozen. These properties are depth to a seasonal high water table, saturated hydraulic conductivity after prolonged wetting, and depth to a layer with a very slow water transmission rate. Changes in soil properties caused by land management or climate changes also cause the hydrologic soil group to change. The influence of ground cover is treated independently. There are four hydrologic soil groups, A, B, C, and D, and three dual groups, A/D, B/D, and C/D. In the dual groups, the first letter is for drained areas and the second letter is for undrained areas.

The four hydrologic soil groups are described in the following paragraphs:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

Depth to the upper and lower boundaries of each layer is indicated.

USDA

Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter. "Loam," for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, "gravelly."

Classification of the soils is determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004).

The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

If laboratory data are available, the A-1, A-2, and A-7 groups are further classified as A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5, or A-7-6. As an additional refinement, the suitability of a soil as subgrade material can be indicated by a group index number. Group index numbers range from 0 for the best subgrade material to 20 or higher for the poorest.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

References:

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Engineering Properties-Natchitoches Parish, Louisiana

Report—Engineering Properties

possible textures follow the dash. The criteria for determining the hydrologic soil group for individual soil components is found in the National Engineering Handbook, Chapter 7 issued May 2007(http://directives.sc.egov.usda.gov/ OpenNonWebContent.aspx?content=17757.wba). Absence of an entry indicates that the data were not estimated. The asterisk 1* denotes the representative texture; other

	-			Engineering Properties-Natchitoches Parish, Louisiana	roperties-N	atchitoches	: Parish, L	ouisiana					P-1 1145#	
Map unit symbol and	Pct. of	Pct. of Hydrolo	Depth	USDA texture	Classif	Classification	Fragn	Fragments	Percenta	Percentage passing sieve number-	n evels pr	umber-	Liquid	Plasticit
	unit	group			Unified	AASHTO	>10 inches	3-10 inches	4	10	40	200	Ĭ	y index
			Ę			5	Pct	Pct					Pct	
Ga-Gallion silt loam, 0 to 1 percent stopes														
Gallion	87	8	0-10	Silt loam	CL CL	A-4, A-6	0	0	100	100	93-100	86-99	26-41	9-19
			10-50	Clay loam, silt loam, silty clay loam	ы	A-6	0	0	100	100	94-100	87-100	26-47	9-25
			50-80	Very fine sandy loam, silt loam	CL CL	A-4, A-6	0	0	100	100	91-100	82-100	24-37	9-18
La—Latanier clay, 0 to 1 percent slopes, rarely flooded														
Latanier	06	۵	9-0	Clay	сн	A-7-6, A-7-5	0	0	100	100	85-100	72-97	52-73	29-40
			6-30	Silty clay, clay	СН	A-7-6	0	0	100	100	92-100	91-100	50-66	29-40
			30-80	Very fine sandy loam, silt loam, silty clay loam	ML, CL, ML, CL,	A-4, A-6	0	. 0	100	100	85-100	69-86	22-39	6-19

Data Source Information

Soil Survey Area: Natchitoches Parish, Louisiana Survey Area Data: Version 10, Dec 9, 2013

USDA Natural Resources

Web Soil Survey National Cooperative Soil Survey

n e A 2**6**1 ж к К a a a a. w a a

Particle Size and Coarse Fragments

This table shows estimates of particle size distribution and coarse fragment content of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Total fragments is the content of fragments of rock and other materials larger than 2 millimeters in diameter on volumetric basis of the whole soil.

Fragments 2-74 mm refers to the content of coarse fragments in the 2 to 74 millimeter size fraction.

Fragments 75-249 mm refers to the content of coarse fragments in teh 75 to 249 millimeter size fraction.

Fragments 250-599 mm refers to the content of coarse fragments in the 250 to 599 millimeter size fraction.

Fragments >=600 mm refers to the content of coarse fragments in the greater than or equal to 600 millimeter size fraction.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Particle Size and Coarse Fragments---Natchitoches Parish, Louisiana

Fragments
Coarse
and
Size
ticle
–Pal
port
Ř

			Pa	rticle Size	and Coarse Fr	Particle Size and Coarse Fragments-Natchitoches Parish, Louisiana	es Parish, Louisiar	a		
Map symbol and soil name	Horizon	Depth	Sand	Silt	Clay	Total fragments	Fragments 2-74 mm	Fragments 75-249 mm	Fragments 250-599 mm	Fragments >=600 mm
		Ч	L-RV-H Pct	L-RV-H Pct	L-RV-H Pct	RV Pct	RV Pct	RV Pct	RV Pct	RV Pct
GaGallion silt loam, 0 to 1 percent slopes			74							
Gallion	Ap	0-10	-11-	-68-	14-21-27	1	1	1	I	I
	Bt	10-50	- 7-	-69-	14-25-35	Ĩ		1	I	Ĩ
	C	50-80	- 2 -	-73-	14-20-26	1		1	1	1
La—Latanier clay, 0 to 1 percent slopes, rarely flooded			•				8 6			
Latanier	Ap	9-0	-12-	-29-	40-59-72	Ĩ	1	1	I	, I
	Bss	6-30	-10-	-32-	40-59-65	-	1		1	
	2C	30-80	-27-	-54-	15-19- 27	Ĩ	1	. 1	1	I

Data Source Information

Soil Survey Area: Natchitoches Parish, Louisiana Survey Area Data: Version 10, Dec 9, 2013 Web Soil Survey National Cooperative Soil Survey

9/29/2014 Page 2 of 2

USDA Natural Resources Conservation Service

Physical Soil Properties

This table shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in the survey area. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller.

Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. In this table, the estimated sand content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeter in diameter. In this table, the estimated silt content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In this table, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. They influence shrinkswell potential, saturated hydraulic conductivity (Ksat), plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (ovendry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/3- or 1/10-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute linear extensibility, shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Saturated hydraulic conductivity (Ksat) refers to the ease with which pores in a saturated soil transmit water. The estimates in the table are expressed in terms of micrometers per second. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Saturated hydraulic conductivity (Ksat) is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Linear extensibility refers to the change in length of an unconfined clod as moisture content is decreased from a moist to a dry state. It is an expression of the volume change between the water content of the clod at 1/3- or 1/10-bar tension (33kPa or 10kPa tension) and oven dryness. The volume change is reported in the table as percent change for the whole soil. The amount and type of clay minerals in the soil influence volume change.

Linear extensibility is used to determine the shrink-swell potential of soils. The shrink-swell potential is low if the soil has a linear extensibility of less than 3 percent; moderate if 3 to 6 percent; high if 6 to 9 percent; and very high if more than 9 percent. If the linear extensibility is more than 3, shrinking and swelling can cause damage to buildings, roads, and other structures and to plant roots. Special design commonly is needed.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In this table, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter. The content of organic matter in a soil can be maintained by returning crop residue to the soil.

Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Erosion factors are shown in the table as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and Ksat. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind and/or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are described in the "National Soil Survey Handbook."

Wind erodibility index is a numerical value indicating the susceptibility of soil to wind erosion, or the tons per acre per year that can be expected to be lost to wind erosion. There is a close correlation between wind erosion and the texture of the surface layer, the size and durability of surface clods, rock fragments, organic matter, and a calcareous reaction. Soil moisture and frozen soil layers also influence wind erosion.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. (http://soils.usda.gov)

Physical Soil Properties---Natchitoches Parish, Louisiana

Properties
Soil
hysical
port-PI
Re

	5				in your an									
	Depth	Sand	Silt	Clay	Moist bulk	Saturated hydraulic	Available water	Linear extensibility	Organic matter		Erosion factors	Ξø	Wind erodibility	Wind erodibility
2					density	conductivity	capacity			Ϋ́	Kf	۲	group	xapui
드	-	Pct	Pct	Pct	g/cc	micro m/sec	ul/ul	Pct	Pct					
0-10		++++	-68-	14-21-27 1.35-1.65	1.35-1.65	4.23-14.11	0.16-0.20	1.4-3.7	0.5-2.0	.43	.43	5	5	56
10-50	-7 - 05	2	-69-	14-25-35	1.35-1.70	4.23-14.11	0.15-0.19	1.4-5.2	0.5-1.0	.32	.32			
50-80	30 - 7-		-73-	14-20-26	1.35-1.70	4.23-14.11	0.15-0.19	1.3-3.4	0.0-0.5	.37	.37			
9-0		-12-	-29-	40-59-72 1.20-1.45	1.20-1.45	0.00-0.42	0.15-0.19	7.3-11.7	1.0-4.0	.32	.32	5	4	86
6-30		-10-	-32-	40-59-65 1.20-1.45 0.00-0.42	1.20-1.45	0.00-0.42	0.15-0.19	6.0-9.4	0.5-1.0	.32	.32			
30-80	30 -27-		-54-	15-19-27 1.30-1.65 0.42-14.11	1.30-1.65	0.42-14.11	0.15-0.19	1.0-3.6	0.5-1.0	37	.37			

Data Source Information

Soil Survey Area: Natchitoches Parish, Louisiana Survey Area Data: Version 10, Dec 9, 2013 9/29/2014 Page 4 of 4

Web Soil Survey National Cooperative Soil Survey

 \mathbf{z}_{i}

Natural Resources Conservation Service

NDA